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Abstract

The present analysis deals with the steady magnetohydrodynamic (MHD) flow of a second grade fluid in the presence of radiation. By
means of similarity transformation, the arising non-linear partial differential equations are reduced to a system of four coupled ordinary
differential equations. The series solutions of coupled system of equations are constructed for velocity and temperature using homotopy
analysis method (HAM). Convergence of the obtained series solution is discussed. The effects of various involved interesting parameters
on the velocity and temperature fields are shown and discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to their application in industry and technology few
problems in fluid mechanics have enjoyed the attention
that has been accorded to the flow which involves non-
Newtonian fluids. It is well known that mechanics of
non-Newtonian fluids present a special challenge to engi-
neers, physicists and mathematicians. The non-linearity
can manifest itself in a variety of ways in many fields, such
as food, drilling operations and bio-engineering. The
Navier–Stokes theory is inadequate for such fluids and
no single constitutive equation is available in the literature
which exhibits the properties of all fluids. Because of com-
plex behavior many fluid models have been suggested.
Amongst these, the fluids of viscoelastic type have received
much attention. In fact interest in viscoelastic fluids goes
back almost to 65 years, triggered by the discovery of
Mysels [1] and Toms [2] who found that the addition of
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small amounts of a high molecular weight polymer to a
Newtonian fluid in turbulent pipe flows resulted in a dra-
matic decrease in pressure drop. The second grade fluid
model is the simplest subclass of viscoelastic fluids for
which one can reasonably hope to obtain the analytic solu-
tion. Some typical works on the topic are given in the ref-
erences [3–12]. Even though considerable progress has been
made in our understanding of the flow phenomena, more
works are needed to understand the effects of the various
parameters involved in the non-Newtonian models and
the formulation of an accurate method of analysis for
any body shapes of engineering significance. Also, the
boundary layer concept for such fluids is of special impor-
tance because of its application to many practical prob-
lems, among which we cite the possibility of reducing
frictional drag on the hulls of ships and submarines. Fur-
ther, thermal radiation effects and MHD flow problems
have assumed an increasing importance at a fundamental
fabrication level. Specifically, such flows occurs in electrical
power generation, astrophysical flows, solar power technol-
ogy, space vehicle re-entry and other industrial areas
[13,14]. Related studies regarding the thermal radiation of
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a gray fluid have been made in the references [15–20]. More
recently, Raptis et al. [21] discussed the thermal radiation
effects on the MHD flow of a viscous fluid.

The purpose of the present study is to examine the influ-
ence of thermal radiation on the MHD flow of a second
grade fluid. The homotopy analysis method proposed by
Liao [22,23] has been used for the analytic solution.
HAM is recently developed powerful technique and has
been successfully applied to several non-linear problems
[25–44]. The organization of the paper is as follows:

In Section 2 the problem of MHD second grade fluid
with radiation effects is formulated. Sections 3 and 4 com-
prise the series solutions for the flow and heat transfer
analysis, respectively. The convergence of the solution is
discussed in Section 5. The graphical results are presented
and discussed in Section 6. Section 7 contains the conclud-
ing remarks.
2. Problem statement

Let us consider MHD flow of an incompressible second
grade fluid past a semi-infinite fixed plate. We choose
x-axis parallel and y-axis normal to the plate. A transverse
magnetic field of strength B0 is imposed. MHD equations
are the usual electromagnetic and hydrodynamic equa-
tions, but modified to take account of the interaction
between the motion and magnetic field. For small magnetic
Reynolds number, the induced magnetic field is neglected.
Moreover, the radiative heat flux in the x-direction is neg-
ligible when compared with the y-direction. For the present
problem the conservation of mass and momentum equa-
tions can be expressed as [24]
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In the above equations V = (u,v), U is the free stream
velocity, a1 is the material constant of second grade fluid,
q and m are the respective density and kinematic viscosity
of fluid and r is the electrical conductivity.

The energy equation is
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in which T is the fluid temperature, k is the thermal con-
ductivity, cp is the specific heat of the fluid under constant
pressure and qr is the radiative heat flux.
The appropriate boundary conditions are

u ¼ 0; v ¼ 0; T ¼ T w at y ¼ 0;

u! UðxÞ; T ! T1 as y !1:
ð4Þ

In above conditions Tw is the temperature at the plate, T1
is the temperature of the fluid far away from the plate and
the free stream velocity is

UðxÞ ¼ axþ cx2; ð5Þ

in which a and c are constants.
Making use of the Rosseland approximation for radia-

tion for an optically thick layer [15] one obtains
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where k* is the mean absorption coefficient and r* is the
Stefan–Boltzmann constant. We express the term T4 as a
linear function of temperature. It is recognized by expand-
ing T4 in a Taylor series about T1 and neglecting higher
terms, thus
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1: ð7Þ

With the help of Eqs. (3), (6) and (7) we can write
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Employing the following transformations
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Eq. (1) is automatically satisfied and Eqs. (2), (4) and (8)
yield
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In the above, the Prandtl number Pr, the radiation number
K, the Hartman number M and the dimensionless material
parameter a are defined, respectively, as:

Pr ¼ mqcp

k
; K ¼ k�k

4r�T 3
1
; M2 ¼ rB2

0

aq
; a ¼ aa1

l
:

Note that the energy equations (12) and (13) in the present
problem becomes similar to that of a viscous fluid case. It is
further interesting to note that for M ¼ 1=

ffiffiffi
a
p

Eq. (10) has
the following exact solution
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3. HAM solution for f(g) and g(g)

In this section we employ the homotopy analysis
method to solve Eqs. (10)–(14). For that we select

f0 gð Þ ¼ g� 1þ e�g; ð15Þ
g0 gð Þ ¼ g� 1þ e�g; ð16Þ

as the initial guess approximations for f(g) and g(g), respec-
tively and

L1 fð Þ ¼ f 000 þ f 00; ð17Þ

as the auxiliary linear operator which has the property
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where C1, C2 and C3 are arbitrary constants.
We construct the zeroth order deformation problems as
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2ĝðg; pÞ
og2

þ a 3
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Obviously for p = 0 and p = 1 we have

f̂ ðg; 0Þ ¼ f0ðgÞ; f̂ ðg; 1Þ ¼ f ðgÞ; ð25Þ
ĝðg; 0Þ ¼ g0ðgÞ; ĝðg; 1Þ ¼ gðgÞ: ð26Þ

As p increases from 0 to 1, f̂ ðg; pÞ and ĝðg; pÞ vary from
f0(g) and g0(g) to the exact solutions f(g) and g(g). Due
to Taylor’s theorem and Eqs. (25) and (26), we can express
that
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ĝðg; pÞ ¼ g0ðgÞ þ
X1
m¼1

gmðgÞpm; ð28Þ

fmðgÞ ¼
1

m!

omf̂ ðg; pÞ
opm

�����
p¼0

; gmðgÞ ¼
1

m!
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where the convergence of the series in Eqs. (27) and (28) is
dependent upon �h1 and �h2. Assume that �h1 and �h2 are se-
lected such that the series in Eqs. (27) and (28) are conver-
gent at p = 1, then due to Eqs. (25) and (26) one can write
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Differentiating the zeroth order deformation equations (19)
and (20) m times with respect to p, then dividing by m!, and
finally setting p = 0 we get the following mth-order defor-
mation problems
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MATHEMATICA is used to solve the linear equations
(32)–(35) up to first few order of approximations and it is
found that f and g can be expressed as
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Substituting Eqs. (39) and (40) into Eqs. (32) and (33) the
recurrence formulae for the coefficients aq
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m;n; a2k

m;n, a3k
m;n; a4k

m;n; b1k
m;n; b2k

m;n; b3k
m;n and

b4k
m;n are

a1k
m;n ¼ k þ 1ð Þakþ1

m;n � nak
m;n;

a2k
m;n ¼ k þ 1ð Þa1kþ1

m;n � na1k
m;n;

a3k
m;n ¼ k þ 1ð Þa2kþ1

m;n � na2k
m;n;

a4k
m;n ¼ k þ 1ð Þa3kþ1

m;n � na3k
m;n;

ð55Þ

b1k
m;n ¼ k þ 1ð Þbkþ1

m;n � nbk
m;n;

b2k
m;n ¼ k þ 1ð Þb1kþ1

m;n � nb1k
m;n;

b3k
m;n ¼ k þ 1ð Þb2kþ1

m;n � nb2k
m;n;

b4k
m;n ¼ k þ 1ð Þb3kþ1

m;n � nb3k
m;n:

ð56Þ

In order to see the detailed procedure of deriving the above
relations the reader may consult [25]. Using the above
recurrence formulae, we can calculate all coefficients ak

m;n

and bk
m;n using only the first four

a0
0;0 ¼ �1; a1

0;0 ¼ 1; a0
0;1 ¼ 1; a2

0;0 ¼ 0;

b0
0;0 ¼ �1; b1

0;0 ¼ 1; b0
0;1 ¼ 1; b2

0;0 ¼ 0
ð57Þ
given by the initial guess approximation in Eqs. (15) and
(16). The corresponding Mth-order approximation of
Eqs. (10), (11) and (14) are

XM

m¼0

fmðgÞ ¼
XM

m¼0

a0
m;0 þ

XMþ1

n¼1

e�ng
XM

m¼n�1

X2ðmþ1�nÞ

k¼0

ak
m;ng

k

 !
;

ð58ÞXM

m¼0

gm gð Þ ¼
XM

m¼0

b0
m;0 þ

XMþ1

n¼1

e�ng
XM

m¼n�1

X2ðmþ1�nÞ

k¼0

bk
m;ng

k

 !
:

ð59Þ

Therefore the following explicit, totally analytic solution of
the present flow is

f ðgÞ ¼
X1
m¼0

fmðgÞ

¼ lim
M!1

XM

m¼0

a0
m;0 þ

XMþ1

n¼1

e�ng
XM

m¼n�1

X2ðmþ1�nÞ

k¼0

ak
m;ng

k

 !" #
;

ð60Þ

gðgÞ ¼
X1
m¼0

gmðgÞ

¼ lim
M!1

XM

m¼0

b0
m;0 þ

XMþ1

n¼1

e�ng
XM

m¼n�1

X2ðmþ1�nÞ

k¼0

bk
m;ng

k

 !" #
:

ð61Þ
4. HAM solution for T0(g) and T1(g)

The initial guess approximations for T0(g) and T1(g) are

T 0
0ðgÞ ¼ 1� e�g; ð62Þ

T 0
1ðgÞ ¼ ge�g; ð63Þ

and the auxiliary operators are

L2 ¼ f 00 þ f 0; ð64Þ
L3 ¼ f 00 þ 2f 0 þ f ; ð65Þ

which satisfy the properties

L2½C5 þ C4e�g� ¼ 0; ð66Þ
L3½ðC7 þ C6gÞe�g� ¼ 0; ð67Þ

in which C4, C5, C6 and C7 are arbitrary constants. The
zeroth order deformation problems are

ð1� pÞL2½bT 0ðg; pÞ � T 0
0ðgÞ�

¼ p�h3N3½bT 0ðg; pÞ; f̂ ðg; pÞ�; ð68Þ
ð1� pÞL3½bT 1ðg; pÞ � T 0

1ðgÞ�
¼ p�h4N4½bT 0ðg; pÞ; bT 1ðg; pÞ; f̂ ðg; pÞ; ĝðg; pÞ�; ð69Þ
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bT 0ð0; pÞ ¼ 0; bT 0ð1; pÞ ¼ 1;bT 1ð0; pÞ ¼ 0; bT 1ð1; pÞ ¼ 0; ð70Þ

N3
bT 0ðg; pÞ; f̂ ðg; pÞ
h i
¼ o

2bT 0ðg; pÞ
og2

þ 3KP
ð3K þ 4Þ f̂ ðg; pÞ

obT 0ðg; pÞ
og

; ð71Þ

N4
bT 0ðg; pÞ; bT 1ðg; pÞ; f̂ ðg; pÞ; ĝðg; pÞ
h i
¼ o2bT 1 g; pð Þ

og2
þ 3KP
ð3K þ 4Þ �

of̂ g; pð Þ
og

bT 1ðg; pÞ
 

þĝðg; pÞ o
bT 0 g; pð Þ

og
þ f̂ g; pð Þ o

bT 1 g; pð Þ
og

!
: ð72Þ
In Eqs. (68) and (69), �h3 and �h4 are the auxiliary nonzero
parameters. For p = 0 and p = 1 we have

bT 0 g; 0ð Þ ¼ T 0
0 gð Þ; bT 0 g; 1ð Þ ¼ T 0 gð Þ; ð73ÞbT 1 g; 0ð Þ ¼ T 0
1 gð Þ; bT 1 g; 1ð Þ ¼ T 1 gð Þ: ð74Þ
As p increases from 0 to 1, bT 0ðg; pÞ and bT 1ðg; pÞ vary from
the initial guesses T 0

0ðgÞ and T 0
1ðgÞ to the exact solutions

T0(g) and T1(g) respectively. By Taylor’s theorem and
Eqs. (68) and (69), one obtains

bT 0 g; pð Þ ¼ T 0
0 gð Þ þ

X1
m¼1

T m
0 gð Þpm; ð75Þ

bT 1 g; pð Þ ¼ T 0
1 gð Þ þ

X1
m¼1

T m
1 gð Þpm; ð76Þ

T m
0 gð Þ ¼ 1

m!

ombT 0 g; pð Þ
opm

�����
p¼0

;

T m
1 gð Þ ¼ 1

m!

ombT 1 g; pð Þ
opm

�����
p¼0

: ð77Þ
Clearly the convergence of the series (75) and (76) strongly
depends upon �h3 and �h4. The values of �h3 and �h4 are se-
lected in such a way that the series (75) and (76) are conver-
gent at p = 1, then due to Eqs. (73) and (74) we have

T 0 gð Þ ¼ T 0
0 gð Þ þ

X1
m¼1

T m
0 gð Þ; ð78Þ

T 1 gð Þ ¼ T 0
1 gð Þ þ

X1
m¼1

T m
1 gð Þ: ð79Þ
For mth-order deformation problems, we employ a similar
procedure as in previous section and obtain

L2 T m
0 gð Þ � vmT m�1

0 gð Þ
� 

¼ �h3R3m gð Þ; ð80Þ
L3 T m

1 gð Þ � vmT m�1
1 gð Þ

� 
¼ �h4R4m gð Þ; ð81Þ

T m
0 0ð Þ ¼ T m

0 1ð Þ ¼ 0; T m
1 0ð Þ ¼ T m

1 1ð Þ ¼ 0; ð82Þ
R3m gð Þ ¼ o
2T m�1

0 gð Þ
og2

þ 3KP
ð3K þ 4Þ

Xm�1

k¼0

oT m�1�k
0

og
fk; ð83Þ

R4m gð Þ ¼ o2T m�1
1 gð Þ
og2

þ 3KP
ð3K þ 4Þ

�
Xm�1

k¼0

�T m�1�k
1 f 0k þ

oT m�1�k
1

og
fk þ

oT m�1�k
0

og
gk

� �
:

ð84Þ

The solutions of Eqs. (80)–(82) is

T m
0 gð Þ ¼

Xmþ1

n¼0

X2ðmþ1�nÞ

q¼0

cq
m;ng

qe�ng; m P 0; ð85Þ

T m
1 gð Þ ¼

Xmþ1

n¼0

X2mþ6�2n

q¼0

dq
m;ng

qe�ng; m P 0: ð86Þ

Using Eqs. (85) and (86) into Eqs. (80) and (81), the recur-
rence formulae for the coefficients cq

m;n of T m
0 ðgÞ for m P 1,

0 6 n 6 m + 1, and 0 6 q 6 2m + 2 � 2n and dq
m;n of T m

1 ðgÞ
for m P 1, 0 6 n 6 m + 1, and 0 6 q 6 2m + 6 � 2n are
obtained as

ck
m;0 ¼ vmv2mþ2�kck

m�1;0; 0 6 k 6 2mþ 2; ð87Þ

c0
m;1 ¼ vmv2mc0

m�1;1 �
Xmþ1

n¼2

X2ðmþ1�nÞ

q¼0

D3q
m;nl1q

n;0; ð88Þ

ck
m;1 ¼ vmv2m�kck

m�1;1 �
X2m

q¼k�1

D3q
m;1l1q

1;k; 1 6 k 6 2m; ð89Þ

ck
m;n ¼ vmv2ðm�nÞþ2�kck

m�1;n �
X2ðmþ1�nÞ

q¼k

D3q
m;nl1q

n;k;

2 6 n 6 mþ 1; 0 6 k 6 2ðmþ 1� nÞ; ð90Þ

d0
m;1 ¼ vmv2mþ4d0

m�1;1 �
Xmþ1

n¼2

X2mþ6�2n

q¼0

D4q
m;nl2q

n;0; ð91Þ

dk
m;1 ¼ vmv2m�kþ4dk

m�1;1 þ
X2mþ4

q¼k�1

D4q
m;1l2q

1;k;

1 6 k 6 2mþ 4; ð92Þ

dk
m;n ¼ vmv2m�2n�kþ6dk

m�1;n þ
X2mþ6�2n

q¼k

D4q
m;nl2q

n;k;

2 6 n 6 mþ 1; 0 6 k 6 2mþ 6� 2n; ð93Þ

where

l1q
1;k ¼

q!

k!
; 0 6 k 6 qþ 1; q P 0; ð94Þ

l1q
n;k ¼

Xq�k

p¼0

q!

k!npþ1 n� 1ð Þq�pþ1
;

0 6 k 6 q; q P 0; n P 2; ð95Þ

l2q
1;k ¼

1

ðqþ 1Þðqþ 2Þ ; q P 0; ð96Þ



Fig. 1. �h1-curve for the 8th-order of approximation.

Fig. 2. �h2-curve for the 8th-order of approximation.
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l2q
n;k ¼

ðq� k þ 1Þq!

k! n� 1ð Þq�pþ2
; 0 6 k 6 q; q P 0; n P 2; ð97Þ

D3q
m;n ¼ �h3 v2ðm�nÞ�qþ2c2q

m�1;n þ
3KP
ð3K þ 4Þ d14q

m;n

� �
; ð98Þ

D4q
m;n ¼ �h4 v2mþ6�2n�qd2q

m�1;n þ
3KP
ð3K þ 4Þ

�
� v2mþ4�2n�qð�d15q

m;n þ d16q
m;nÞ þ d17q

m;n

� ��
; ð99Þ

and the coefficients d14q
m;n; d15q

m;n; d16q
m;n; and d17q

m;n, where
m P 1, 0 6 n 6 m + 1, 0 6 q 6 2(m + 1 � n) and 0 6 q 6

2m + 6 � 2n are

d14q
m;n ¼

Xm�1

k¼0

Xminfn;kþ1g

j¼maxf0;n�mþkg

Xminfq;2ðkþ1�jÞg

i¼maxf0;q�2ðm�k�nþjÞg

� ai
k;jc1q�i

m�1�k;n�j;

d15q
m;n ¼

Xm�1

k¼0

Xminfn;kþ1g

j¼maxf0;n�mþkg

Xminfq;2ðkþ2�2jÞg

i¼maxf0;q�2mþ2k�4þ2n�2jg

� a1i
k;jd

q�i
m�1�k;n�j;

d16q
m;n ¼

Xm�1

k¼0

Xminfn;kþ1g

j¼maxf0;n�mþkg

Xminfq;2ðkþ2�2jÞg

i¼maxf0;q�2mþ2k�4þ2n�2jg

� ai
k;jd1q�i

m�1�k;n�j;

d17q
m;n ¼

Xm�1

k¼0

Xminfn;kþ1g

j¼maxf0;n�mþkg

Xminfq;2ðkþ1�jÞg

i¼maxf0;q�2ðm�k�nþjÞg

� bi
k;jc1q�i

m�1�k;n�j;

where

c1k
m;n ¼ k þ 1ð Þckþ1

m;n � nck
m;n;

c2k
m;n ¼ k þ 1ð Þac1kþ1

m;n � ca1k
m;n;

ð100Þ

d1k
m;n ¼ k þ 1ð Þdkþ1

m;n � ndk
m;n;

d2k
m;n ¼ k þ 1ð Þd1kþ1

m;n � nd1k
m;n:

ð101Þ

Using the same procedure as in Section 3, we can calculate
all coefficients ck

m;n and dk
m;n using only the first few

c0
0;0 ¼ 1; c0

0;1 ¼ �1; c1
0;0 ¼ c2

0;0 ¼ 0;

d1
0;1 ¼ 0; d0

0;0 ¼ b�1
0;0 ¼ b0

0;1 ¼ b�2
0;0 ¼ 0;

ð102Þ

given by the initial guess approximation in Eqs. (62) and
(63). The corresponding Mth-order approximation of
Eqs. (12)–(14) areXM

m¼0

T m
0 gð Þ ¼

XM

m¼0

c0
m;0 þ

XMþ1

n¼1

e�ng
XM

m¼n�1

X2ðmþ1�nÞ

k¼0

ck
m;ng

k

 !
;

ð103ÞXM

m¼0

T m
1 gð Þ ¼

XMþ1

n¼1

e�ng
XM

m¼n�1

X2mþ6�2n

k¼0

dk
m;ng

k

 !
: ð104Þ
and thus

T 0 gð Þ ¼
XM

m¼0

T m
0 gð Þ

¼ lim
M!1

XM

m¼0

c0
m;0 þ

XMþ1

n¼1

e�ng
XM

m¼n�1

X2ðmþ1�nÞ

k¼0

ck
m;ng

k

 !" #
;

ð105Þ

T 1 gð Þ ¼
XM

m¼0

T m
1 gð Þ

¼ lim
M!1

XMþ1

n¼1

e�ng
XM

m¼n�1

X2mþ6�2n

k¼0

dk
m;ng

k

 !" #
: ð106Þ
5. Convergence of the HAM solution

As pointed out by Liao [22], the convergence and rate of
approximation for the HAM solution strongly depends on
the values of auxiliary parameters �h1, �h2, �h3 and �h4. To see
the admissible values of �h1, �h2, �h3 and �h4, �h-curves are plot-
ted for two different orders of approximations. Figs. 1–4
clearly depict that the range for the admissible values for
�h1, �h2, �h3 and �h4 is �0.04 6 �h1 < 0, �0.15 6 �h2 < 0,



Fig. 3. �h3-curve for the 8th-order of approximation.

Fig. 4. �h4-curve for the 8th-order of approximation.

Fig. 6. Effects of a on 8th-order approximation for g0 at �h2 = �0.05.

Fig. 7. Effects of M on 8th-order approximation for f 0 at �h1 = �0.01.

938 T. Hayat et al. / International Journal of Heat and Mass Transfer 50 (2007) 931–941
�0.6 6 �h3 < 0 and �0.004 6 �h4 < 0. Our calculations
clearly indicate that the series (60), (61), (104) and (106)
converge for whole region of g when �h1 = � 0.01,
�h1 = � 0.05, �h3 = � 0.3 and �h4 = � 0.002.
6. Results and discussion

Figs. 5–16 have been drawn to see the effects of the sec-
ond grade parameter a, Hartman number M, radiation
Fig. 5. Effects of a on 8th-order approximation for f 0 at �h1 = �0.01.

Fig. 8. Effects of M on 8th-order approximation for g0 at �h2 = �0.05.
parameter K and the Prandtl number Pr on the velocity
and the temperature fields.

Figs. 5–8 are made in order to see the effects of a and M

on the velocity components f 0 and g0. From Figs. 5 and 6, it
is seen that f 0 and g0 are increased as the second grade
parameter a increases but this change is larger in g0 when
compared with f 0. However, the boundary layer thickness
decreases in both the cases f 0 and g0. Figs. 7 and 8 show



Fig. 9. Effects of a on 8th-order approximation for T0 at �h3 = �0.3.

Fig. 10. Effects of a on 8th-order approximation for T1 at �h4 = �0.002.

Fig. 11. Effects of M on 8th-order approximation for T0 at �h3 = �0.3.

Fig. 12. Effects of M on 8th-order approximation for T1 at �h4 = �0.002.

Fig. 13. Effects of K on 8th-order approximation for T0 at �h3 = �0.3.

Fig. 14. Effects of K on 8th-order approximation for T1 at �h4 = �0.002.
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the effects of M on f 0 and g0. The velocity f 0 in Fig. 7 in
increasing function of M and the boundary layer thickness
decreases in case of f0. From Fig. 8, it is seen that the veloc-
ity component g0 is decreased as the Hartman number M

increases. However, this decrement is very larger in g0 on
the small values of M. The boundary layer thickness
increases in this cases.
Figs. 9–16 are plotted to see the effects of a, M, K and Pr

on the temperature profiles T0 and T1. Figs. 9 and 10 indi-
cate the effects of a on T0 and T1. In Fig. 9, the temperature
T0 decreases as a increases but this decrement is made on
very large values of second grade parameter a and in
Fig. 10, T1 is increasing when a increases. The boundary
layer thickness increases in case of T0 and decreases in case



Fig. 15. Effects of Pr on 8th-order approximation for T0 at �h3 = �0.3.

Fig. 16. Effects of Pr on 8th-order approximation for T1 at �h4 = �0.002.

Table 2
Effects of the non-dimensional parameters M, a, K and Pr on T 00ð0Þ and
T 01ð0Þ
a M K Pr T 00ð0Þ T 01ð0Þ
1 0 3 1 0.36170565 1.44329

0.1 0.361766 1.44309
0.5 0.363197 1.4384
1.0 0.36751389 1.42398
1.5 0.374217 1.40059
3.0 0.40228349 1.27357
4.0 0.42214090 1.09502

1 2 0 1 0.057648010 1.0000000
0.1 0.155971 1.00382
0.5 0.31501 1.02045
1.0 0.38762665 1.03878
1.5 0.421388 1.05697
2.0 0.43071212 1.09287
3.0 0.38268495 1.36861
5.0 0.10071477 4.68049

1 1 3 0 0.057648010 1.0000000
0.1 0.152492 1.01245
0.3 0.268866 1.03823
0.5 0.342648 1.06497
0.7 0.396276 1.09249
1.0 0.36751389 1.13512
1.2 �0.205072 1.16406

0 1 3 1 0.38138688 1.12466
0.1 0.379944 1.15557
0.5 0.374298 1.27704
1.0 0.36751389 1.42398
1.5 0.361019 1.56544
1.7 0.358499 1.62049
2.0 0.35479890 1.70141
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of T1. Figs. 11 and 12 illustrate the effects of M on temper-
ature T0 and T1. It is found in Fig. 11 that T0 initially
increases and after the value at M P 10 it goes to decrease
and the boundary layer thickness is increased. Fig. 12 gives
that T1 is decreasing function of M. The boundary layer
thickness is also increased in the case of T1. Figs. 13 and
14 elucidate the effects of K on T0 and T1. It is seen that
T0 and T1 are increasing function of K. Moreover the
boundary layer thickness decreases in both the cases T0

and T1. Figs. 15 and 16 show the effects of Pr on T0 and
T1. The temperatures T0 and T1 increase for large values
of Pr. However, this increment is larger in T0 when com-
pared with T1 at very small values of Pr. The boundary
layer thickness decreases in both cases of T0 and T1.
Table 1
Effects of the non-dimensional parameters M and a on f 00(0) and g00(0)

a M f 00(0) g00(0) a M f 00(0) g00(0)

1 0 0.93245764 0.87630411 0 1 1.1329356 2.0831693
0.1 0.933154 0.877628 0.1 1.11856 1.91021
0.5 0.949745 0.908814 0.5 1.06353 1.38704
1.0 1.0000000 1.0000000 1.0 1.0000000 1.0000000
1.5 1.07884 1.13584 1.5 0.941841 0.783586
3.0 1.4266105 1.5686494 1.7 0.919979 0.724826
4.0 1.7023142 �21.505764 2.0 0.88860210 0.65521489
Tables 1 and 2 have been included just to show the var-
iation of a, M, K, and Pr. Table 1 indicates the effects of a
and M on f00(0) and g00(0). It is found that f 00(0) increases
with an increase in M but decreases for large values of a
[45]. The behavior of a and M on the magnitude of g00(0)
is similar to that of f00(0). Table 2 shows the variation of
M, K, Pr and a on T 00ð0Þ and T 01ð0Þ. As expected T 00ð0Þ
increases and T 01ð0Þ decreases when values of M are
increased. Further T 01ð0Þ is an increasing function of K

whereas T 00ð0Þ increases for 0 6 K 6 2.0 and then decreases
when K P 2. The effects of Pr here indicates that T 00ð0Þ first
increases and then decreases. However T 01ð0Þ is an increas-
ing function of Pr. Moreover, the large values of a are
responsible for increasing T 01ð0Þ and decreasing T 00ð0Þ.

7. Concluding remarks

MHD steady flow of an incompressible second grade
fluid in the presence of radiation has been examined in this
treatise. The system is stressed by a uniform transverse
magnetic field. The non-linear equations are solved analyt-
ically using HAM. The obtained results are quite new and
have never been reported. Even such results for MHD vis-
cous fluid have not be reported yet. However, the numeri-
cal solution for MHD viscous fluid is given in reference
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[21]. The results for MHD viscous fluid in the presence of a
radiation can be recovered by taking a = 0. The present
solution for f00(0) and T 00ð0Þ are qualitatively similar to that
given in reference [45]. This provides useful comparison.
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