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Abstract

The present analysis deals with the steady magnetohydrodynamic (MHD) flow of a second grade fluid in the presence of radiation. By
means of similarity transformation, the arising non-linear partial differential equations are reduced to a system of four coupled ordinary
differential equations. The series solutions of coupled system of equations are constructed for velocity and temperature using homotopy
analysis method (HAM). Convergence of the obtained series solution is discussed. The effects of various involved interesting parameters

on the velocity and temperature fields are shown and discussed.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to their application in industry and technology few
problems in fluid mechanics have enjoyed the attention
that has been accorded to the flow which involves non-
Newtonian fluids. It is well known that mechanics of
non-Newtonian fluids present a special challenge to engi-
neers, physicists and mathematicians. The non-linearity
can manifest itself in a variety of ways in many fields, such
as food, drilling operations and bio-engineering. The
Navier—Stokes theory is inadequate for such fluids and
no single constitutive equation is available in the literature
which exhibits the properties of all fluids. Because of com-
plex behavior many fluid models have been suggested.
Amongst these, the fluids of viscoelastic type have received
much attention. In fact interest in viscoelastic fluids goes
back almost to 65 years, triggered by the discovery of
Mysels [1] and Toms [2] who found that the addition of
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small amounts of a high molecular weight polymer to a
Newtonian fluid in turbulent pipe flows resulted in a dra-
matic decrease in pressure drop. The second grade fluid
model is the simplest subclass of viscoelastic fluids for
which one can reasonably hope to obtain the analytic solu-
tion. Some typical works on the topic are given in the ref-
erences [3—12]. Even though considerable progress has been
made in our understanding of the flow phenomena, more
works are needed to understand the effects of the various
parameters involved in the non-Newtonian models and
the formulation of an accurate method of analysis for
any body shapes of engineering significance. Also, the
boundary layer concept for such fluids is of special impor-
tance because of its application to many practical prob-
lems, among which we cite the possibility of reducing
frictional drag on the hulls of ships and submarines. Fur-
ther, thermal radiation effects and MHD flow problems
have assumed an increasing importance at a fundamental
fabrication level. Specifically, such flows occurs in electrical
power generation, astrophysical flows, solar power technol-
ogy, space vehicle re-entry and other industrial areas
[13,14]. Related studies regarding the thermal radiation of
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a gray fluid have been made in the references [15-20]. More
recently, Raptis et al. [21] discussed the thermal radiation
effects on the MHD flow of a viscous fluid.

The purpose of the present study is to examine the influ-
ence of thermal radiation on the MHD flow of a second
grade fluid. The homotopy analysis method proposed by
Liao [22,23] has been used for the analytic solution.
HAM is recently developed powerful technique and has
been successfully applied to several non-linear problems
[25-44]. The organization of the paper is as follows:

In Section 2 the problem of MHD second grade fluid
with radiation effects is formulated. Sections 3 and 4 com-
prise the series solutions for the flow and heat transfer
analysis, respectively. The convergence of the solution is
discussed in Section 5. The graphical results are presented
and discussed in Section 6. Section 7 contains the conclud-
ing remarks.

2. Problem statement

Let us consider MHD flow of an incompressible second
grade fluid past a semi-infinite fixed plate. We choose
x-axis parallel and y-axis normal to the plate. A transverse
magnetic field of strength B, is imposed. MHD equations
are the usual electromagnetic and hydrodynamic equa-
tions, but modified to take account of the interaction
between the motion and magnetic field. For small magnetic
Reynolds number, the induced magnetic field is neglected.
Moreover, the radiative heat flux in the x-direction is neg-
ligible when compared with the y-direction. For the present
problem the conservation of mass and momentum equa-
tions can be expressed as [24]

o, o0
ox  dy

Oou  Qu o’u dU oB;
U_—+ v —=

Ox dy va_yﬁ dx

0, (1)

w(, Pu e wds o
p \  Ox0pr x 0y dyyr )
(2)

In the above equations V' = (u,v), U is the free stream
velocity, o is the material constant of second grade fluid,
p and v are the respective density and kinematic viscosity
of fluid and o is the electrical conductivity.

The energy equation is

ST o0 kT (Y’
Ox dy  pe, Y pe, \dy
L oy (Ou\ O [ Ou L vau 1 0gq,
pc, \dy) dy “ox dy)  pcp, Oy
(3)

in which 7 is the fluid temperature, k is the thermal con-
ductivity, ¢, is the specific heat of the fluid under constant
pressure and ¢, is the radiative heat flux.

The appropriate boundary conditions are

u=0, v=0, T=T,
u—Ux), T—Ty

at y =0,
4)

as y — oo.

In above conditions 7, is the temperature at the plate, 7T,
is the temperature of the fluid far away from the plate and
the free stream velocity is

U(x) = ax + cx?, (5)

in which @ and ¢ are constants.
Making use of the Rosseland approximation for radia-
tion for an optically thick layer [15] one obtains

4¢* OT*
q: = _W E» (6)

where k" is the mean absorption coefficient and ¢ is the
Stefan—Boltzmann constant. We express the term 7% as a
linear function of temperature. It is recognized by expand-
ing 7% in a Taylor series about 7, and neglecting higher
terms, thus

T* 473 T - 3T . (7)
With the help of Egs. (3), (6) and (7) we can write

T O k2T g (Y’
Ox dy  pep, Y pep, \Oy

Lo (Qu\ O [ Qu Ou)
pe, \oy) oy \"ax " "oy

Employing the following transformations

166°T3, &°T
3k*pe, 0y
(8)

1= D u=af )+ edg )
2cx

v=—Vavf(n) — \/ng(ﬂ), 9)
T =Tt (T = 1) To) + 247101
Eq. (1) is automatically satisfied and Egs. (2), (4) and (8)
yield
f/// _ MZf/ _f/2 +ff// + o((_f//z + 2f/f/// _ff””)

+(M*+1) =0, (10)
g — Mg =31 +2gf" +g"f + (M* +3)

nr

+oa(3g"f = 3" (" +3¢ " —2¢f" —fg ) =0, (1

(3K +4)T} + 3KPT, = 0, (12)
(BK +4)T) +3KP(~T\f + Tog + T\ f) =0, (13)
f(()) =0, f/(()) =0, f/(oo) =1,

g(0)=0, g'(0)=0, g'(c0)=1,

T()(O) = 0, To(OO) = 1, (14)
T1(0) =0, Ty(c0)=0



T. Hayat et al. | International Journal of Heat and Mass Transfer 50 (2007) 931-941 933

In the above, the Prandtl number Pr, the radiation number
K, the Hartman number M and the dimensionless material
parameter o are defined, respectively, as:

Pr:vPCp, K — k*k3, Mzza_B(z), ———
k 40°T7, ap I

Note that the energy equations (12) and (13) in the present
problem becomes similar to that of a viscous fluid case. It is
further interesting to note that for M = 1//o Eq. (10) has
the following exact solution

f:11+\/&(e*”/ﬁf l)-

3. HAM solution for f{n) and g(n)

In this section we employ the homotopy analysis
method to solve Egs. (10)—(14). For that we select

Son) =n—1+e™, (15)
g =n—1+e”, (16)

as the initial guess approximations for f{) and g(n), respec-
tively and

() =1"+1" (17)
as the auxiliary linear operator which has the property

gl[C1U+C2+C3C_"]:O, (18)

where C;, C, and Cj are arbitrary constants.
We construct the zeroth order deformation problems as

(1=p) 21 [F0.p) = fon)] = phrt'1 [F.)]. (19)
(1= p)Z1[20n,p) — go(n)] = phoo¥> [7(1,), 200, )] (20)
j}(()?p) =0, f/(ovp) =0, j,/(oo’p) =1, (21)
g(ovp) =0, g,(oap) =0, gl(oovp) =1, (22)

where 7; and 7%, are non-zero auxiliary parameters,
p €[0,1] is the embedding parameter and the non-linear
differential operators .4/"; and /", are defined by

) = I 4 L 1o )
oI mp)\ s E0p)

Nalf (n,p),2(n,p)]
= 63%(:’1’) M ag%’;’p) + (1=, (M +3)
ag(a;; .2) %’;p) +28(n, p) %}7;’0) +f(n.p) az%(—:z’m
+%ﬁ%¥ﬁ@$ﬁ_ﬁ%ﬂ@&%¢)

A 37 47 4
+3 —ag(a’z;p) ofn.p) 1;51;1;17) —28(1.p) f;(;(p) - i;’l;”)f(n,m}.
(24)
Obviously for p =0 and p =1 we have
J(0,0) = foln),  f(n,1) = f(n), (25)
8(n,0) =go(n), &Mn,1)=gn). (26)

As p increases from 0 to 1, f”(n,p) and g(n,p) vary from
fo(n) and go(n) to the exact solutions f{y) and g(n). Due
to Taylor’s theorem and Egs. (25) and (26), we can express
that

FOnp) = foln) + 3 Sl 27)
g(n,p) = g(n) + igm(n)p"’, (28)
) = RPN g ) = TP

where the convergence of the series in Eqgs. (27) and (28) is
dependent upon 7; and 7,. Assume that 7, and 7%, are se-
lected such that the series in Egs. (27) and (28) are conver-
gent at p = 1, then due to Egs. (25) and (26) one can write

£ = folm) + 3 ful), (30)
n) +§:gm(n)~ (31)

Differentiating the zeroth order deformation equations (19)
and (20) m times with respect to p, then dividing by m!, and
finally setting p = 0 we get the following mth-order defor-
mation problems

Lilfu(n) = 1 ()] = 11 R1u(n), (32)
ZL1[gn() = An&m-1(n))] —hz%m( ): (33)
Jn(0) = £,,(0) = f;,(c0) = (34)
gn(0) = g,(0) = g, (c0) = 0 (35)
Rin(n) = fr:z”l(n) My 4+ (1= 7,)(M? + 1)

+Z

‘H‘( it 2 S

m 1— kfk +fm 1 kf

mnr

— forafi )]s (36)
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Ron() = g (1) = Mg, + (1 = 1,,)(M* +3)
m—1

+ Z |:_3g:n—1—kf; + 2811t + & iSi
=0

+oc(3g::,/ el = 38m o t 38 S

2 € ). @)
where
0, m<l1
, 30 ’ 38
Tom {1, m> 1. (38)

MATHEMATICA is used to solve the linear equations
(32)—(35) up to first few order of approximations and it is
found that fand g can be expressed as

m+1 2(m+1—n)

Fuln _Z Z al,n’e™, m >0, (39)

n=

m+1 2(m+1-n)

g =Y > b,

n=0 q=0

m = 0. (40)

Substituting Egs. (39) and (40) into Egs. (32) and (33) the
recurrence formulae for the coefficients af,, and b

fm(n) and g,,(n) are obtained, respectlvely, for m > 1
O0<n<m+land 0<g<2(m+1—n)as

2m
_ 0 q 4
Ao = AmXom+2%m_10 — E Alm,l:ul.l

q=0
m+1 1—n)
- Z (n— DAL, 1, v Z AL, (( Dy — uZ_l) :
(41)
aﬁ,,o = XmXZerkaa]:n—l‘O’ I <k<2m+2, (42)
2m
ml - /m72m m—1,1 +ZA1mllul]
m+1 2(m+1-n)
+ Z {”Alsz‘nﬂg.o + Z Al‘il‘n(nu‘i,o - :“Z,l)}v
n=2 q=1
(43)
m1 = o om -k it Z Almhulkv 1 <k<2m, (44)
q=k—1
2(m+1-n)
)CmyZ(m n) k+2am I,n + Z Almnlunk?
q=k
2<n<m+1, 0<k<2(m+1—n), (45)
2m
b ym72m+2bm 1,0 ZAzmI:ul 1
q=0
m+1
- Z |: n— 1)A2m nlun()
2(m+1 n)
+ Z A2, ((n = Dpiy — #Z,l)} (46)

bk = AmXom+2— kbfn oo I <k<2m+2, (47)

bml _)Cmyzm m— 11+ § AZml:ul]
q=0
(m+1-n)

m+1
+i{m2‘;nun0+ Z A2 (nuZ,o—uZ,l)}v

n=2

(48)
b = YmXom- Abn1 it Z Azmlﬂlm 1 < k< 2m, (49)
q=k—1
2(m+1—-n)
blr(n /m72m n) k+2bm ln+ Z Azmnnunlﬂ
q=k
2<n<m+1, 0<k<2(m+1—n), (50)
where
—k+2)a!
u‘f,k—(q k,+ )q7 0<k<g+1l, ¢=0, (51)
q—k ( k— !
¢ q p+1l)g < S <
P A
(52)
Allrln,n = hl |:X2(m n) q+2(a3 _M2a131 ln)
(019, — 028,,) + «(~03),,+ 2043, — 053,,) |, (53)
N2, = 1 [ Lot ny-g12(b3h 1, = MBS, ,)
—(306;,, — 207, — 08 )
+(3099,, — 3010, + 30114, — 20124, — 3133,,)].
(54)
and 5131 —5133”1, where m > 1,0<n<3m+3,0<¢g<

3m+3 — nare

m—1 min{nk+1}

S1e = Z

k=0 j=max{0,n—m+k} i=max{0,q—2(m—k—n+j)}

min{g,2(k+1-j)}

ql
xal alm |k

m—1 min{nk+1}

824, = Z Z

k=0 j=max{0, n—m+k} i=max{0,q—2(m—k—n+j)}

min{q,2(k+1—j)}

i
Xazk/ m— l kon—j?

m—1 min{nk+1} min{q,2(k+1—j)}

Bu=d D 2

k=0 j=max{0,n—m+k} i=max{0,g—2(m—k—n+j)}

q—i
Xazk/ 2m 1-k,n—j>

— min{nk+1}

547 = Z >

k=0 j=max{0,n—m+k} i=max{0,g—2(m—k—n+j)}

min{g,2(k+1-j)}

q i
x a3 A s

- min{nk+1} min{q,2(k+1-j)}

852, = Z >

k=0 j=max{0,n—m+k} i=max{0,q—2(m—k—n+j)}

i —i
Xa4kj m—1—k.n—j>
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- min{nk+1}

368 = Z Z

k=0 j=max{0,n—m+k} i=max{0,g—2(m—k—n+j)}

X al' blq ‘

m—1—kn—j>

min{q,2(k+1—/)}

— mm{n k+1}

87¢, = Z >

k=0 j=max{0.n—m+k} i=max{0,g—2(m—k—n+j)}

x a2t b’

k.j"m—1—kn—j?

min{q,2(k+1—/)}

— min{nk+1}

587, = Z >

k=0 j=max{0.n—m+k} i=max{0,g—2(m—k—n+j)}
i q—i
xall b2

- min{nk+1}

897, = Z >

k=0 j=max{0,n—m+k} i=max{0,g—2(m—k—n+j)}

X al’ D3 !

m—1—k.n—j’

min{g,2(k+1-j)}

_j?
min{g,2(k+1—j)}

m—1 mm{n,k+1}

5104, ="

k=0 j=max{0,n—m+k} i=max{0,g—2(m—k—n+j)}

X az;;‘ B2

m—1—k.n—j>

min{g,2(k+1-j)}

m—1 min{n.k+1}

S11¢ = Z

k=0 j=max{0,n—m+k} i=max{0,q—2(m—k—n+j)}

min{g,2(k+1—j)}

i q—i
x a3 bl 4
m—1 min{n k+1} min{q,2(k+1—j)}

512! = Z

k=0 j=max{0,n—m+k} i=max{0,q—2(m—k—n+j)}

i 7.9—i
><a4k1bm 1-kn—j>s

m—1 min{nk+1}

8137 = Z

k=0 j=max{0,n—m+k} i=max{0,q—2(m—k—n+j)}

min{q,2(k+1—/)}

X ak /b431 11 kon—j*

The values aly,,, a2, . a3, a4, . bl% b2 b3\ and
b4/;1n
alk = (k+l)al;:1+nl mn’
a2t = (k+ Dalth — nalk ,

m.n m.n (55)
a3y, = (k+1)a2,! — na2y, .
a4f;n (k+ )3k} —na3;, .
b1k = (k+ 1)by1 = nb), .
b2y, = (k+1)b1t —nblk |

k7 k+1 k (56)
b3, = (k+1)b2," — nb2, .
b4’,; a=k+1 )b3k“ — b3}, .

In order to see the detailed procedure of deriving the above
relations the reader may consult [25]. Using the above
recurrence formulae, we can calculate all coefficients aj, ,

and B! using only the first four

0 1 0 2
a,=-1, ay,=1, a3, =1, a;,=0,

(57)
boy=—1, byy=1, by, =1, bj,=0

given by the initial guess approximation in Egs. (15) and
(16). The corresponding Mth-order approximation of
Egs. (10), (11) and (14) are

M M+1 2(m+1-n
S z%wZH(z zaM)

m=0 m=0 m=n—1

(58)
M M M+1 2(m+1-n
STRURS SCHES o D ol o
m=0 m=0 m=n—1

(59)

Therefore the following explicit, totally analytic solution of
the present flow is

") :ifm(n)
S (87 )

(60)
= igm(n)
= [meﬁMie"”( 2 "i Byl )]
(61)

4. HAM solution for To(n) and T;(x)

The initial guess approximations for 7y(n) and T,(#) are
Ton) =1—e™, (62)
T0(n) = ne™, (63)

and the auxiliary operators are

Lr=f"+f, (64)
Ly=["+2/"+, (65)

which satisfy the properties
yz [C5 + C4e”7] = 0, (66)
L3[(C7 + Cen)e™"] = 0, (67)

in which C4, Cs, Cs and C; are arbitrary constants. The
zeroth order deformation problems are

(1= p)Za[To(n,p) — Ty(n))]
= plsA'3[To(n,p). f(n.p)], (68)
(1= p)Z5[Ti(n,p) — T\ (n)]

= phaN3[To(n.p), T1(n,p), f (n.p). &(n.p)]; (69)
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1(0c0,p) =0, (70)
X[ To(n.p). F(n.p)]

_@To(n.p) ,  3KP OTo(n,p)

o + (3K +4)J}(H7P)a—na (71)

N [Toln.p). Ton.p).f (1.).£01.0)]

_@T\(np), 3KP [ 8f(n.p)
on? (3K +4) on

7-'1(7’7]7)

aTo(n,p)

+2(n.0) TR p)gfﬁfﬂi£2>. (72)

on

In Egs. (68) and (69), 73 and 7,4 are the auxiliary nonzero
parameters. For p =0 and p =1 we have

0(’770) = Tg(’/])a
1(17?0) = T(l)(n)7

~N N

As p increases from 0 to 1, To(y, p) and Ty (n, p) vary from
the initial guesses T9(n) and T9(n) to the exact solutions
To(n) and Ty(n) respectively. By Taylor’s theorem and
Egs. (68) and (69), one obtains

?mw=ﬁw+§mwﬂ (75)
?mwzﬂw+§mWﬂ (76)
mwzﬁf%%ﬂ 7
p=0
) = oy C) )
p=0

Clearly the convergence of the series (75) and (76) strongly
depends upon 73 and %4. The values of 73 and 74 are se-
lected in such a way that the series (75) and (76) are conver-
gent at p = 1, then due to Egs. (73) and (74) we have

To(n) = T + 3 T3 ), (78)
Tin) = 1) + 377 ). (19)

For mth-order deformation problems, we employ a similar
procedure as in previous section and obtain

"‘gjz [T{)n )_7me 1( )] :h3<@3m(n)7 (80)
$3[T';’ ) = 2 T7 (1)) = haan(n), (81)
T3 (0) = T (o0) = 0, T7(0) = T7(o0) = 0, (82)

62 Tmfl (’7 m— Tm 1— k

) = STy ST (53)
P! 3KP

’%4’" (’7) — 1 (’7) 4

o (3K + 4)

aTm—l—k aTm—l—k
X —Tp S+ — &)-
p < on on

—_

3

Il
o

(84)

The solutions of Egs. (80)—(82) is

m+1 2(m+1-n)

Z Z ch e, m =0, (85)

n=0 q=0
m+1 2m+6-2n

T =Y Y. di e,

n=0 q=0

m = 0. (86)

Using Egs. (85) and (86) into Egs. (80) and (81), the recur-
rence formulae for the coefficients ¢?  of Ty (n) for m > 1,
0<n<m+1l,and0< ¢ < 2m+2 2nanddﬁm of T (n)
for m>=1, 0<n<m+1, and 0< ¢g<2m+ 6 —2n are
obtained as

o = TmMoms2kCo_ 100 0<Ak<2m+2, (87)

m+1 2(m+1—n)

CO /myZm m—1,1 Z Z A3mnluln07 (88)
n=2 q=0
Ck = YmXom— kcm L Z A3 Ik7 1<k<2m, (39)
q=k—1
2(m+1—n)
Cﬁzn meZ (m—n)+2— kcm In Z A3mn nk’
2<n<m+1, 0<k< (m+1—n), (90)
m+1 2m+6-2n
d21,1 = me2m+4d?nfl,l - Z Z A4Zzn:u2n 00 (91)
n=2 q=0
2m+4
dﬁ;,l = XmXZm—k+4dlrjz—1,1 + Z A431A1/‘2‘11,k7
q=k—1
1 <k<2m+4, (92)
2m+6—2n
dﬁz,n = XmX2m72n7k+6df€nfl,n + Z A4q :uzn N3l
q=k
2<n<m+1, 0<k<2m+6—2n, (93)
where
ql
ullk—y, 0<k<g+1, g=0, (94)
q—k |
q:
1, = :
Hlnk p; klnptl(n — 1)‘]7"’+1
0<k<g, ¢=0, n>2, (95)
1
u2, = q =0, (96)

(¢+1)(g+2)’
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q _ (g —k+1)q

= > >
Ky g k'(l’l — 1)q,p+27 q = 0, n = 2, (97)

<k <gq,

3KP

Asfn,n = h3 |:X2(m—n)—q+262i]nl7n AT (3K + 4) 51431 n:| ) (98)
3KP

A4 =Ny |:X2m+62nqd2(r]n—l,n + GK+4)

X (X2m+472n7q(_5153n,n + 516:];1,;1) + 51731,n):| ’ (99)

and the coeflicients 6147 . 6157, 616}, and 617, , where
m=1,0<n<m+1, O<q<2(m-|—1—n) and 0 < ¢ <

2m + 6 2n are

— min{nk+1} min{q,2(k+1—j)}

5147 Z > >

k=0 j=max{0,n—m+k} i=max{0,g—2(m—k—n+j)}

q—i
Xak]CIm 1—k,n—j>
m—1 min{nk+1} min{q,2(k+2-2/)}

5157, = Z

k=0 j=max{0,n—m-+k} i=max{0,q—2m+2k—4+2n—2;}

i q—i
X a1k4jdm—l—k<n—j’

m—1 min{nk+1}

167, :Z Z

k=0 j=max{0,n—m+k} i=max{0,g—2m+2k—4+2n—2j}

min{q,2(k+2-2/)}

q—i
X ak ]dlm 1—kn—j»
m—1 min{n,k+1} min{g,2(k+1—j)}

ST, =" >

k=0 j=max{0,n—m-+k} i=max{0,q—2(m—k—n+j)}

m1 k>
where

clfnn = (k+ l)cﬁ;} — nc’;l,n, (100)
021;’,1 =(k+ l)aclﬁ;1 — calfm,

dif, = (k+ 1)y — nd., . (1o)
d2i, = (k+ 1)d1,! | —ndl! |

Using the same procedure as in Section 3, we can calculate

all coefficients ¢ , and d’fm using only the first few
cg,o =1, C81 =-1, C(l),o = Cg,o =0, (102)
d(l),l =0, dg,o = b(;,(l) = bg,l = ba,é =0,

given by the initial guess approximation in Egs. (62) and
(63). The corresponding Mth-order approximation of
Egs. (12)—(14) are

M M+1 2(m+1-n)
ST zcmo+zew(z 3 n)
m=0

m=n—1
(103)
M M+1 M 2m46—2n
> T = Ze’”’( >y dii,m")- (104)
m=0 n=1 m=n—1 k=0

and thus

m=0
M M+1 M 2(m+1-n)
= lim [ZCO,O—FZe "'7<Z cfnnnk>],
M=o m=0 n=1 m=n—1 k=0
(105)
M
Ti(n) = ZTT(’?)
m=0
M+1 M 2m+6—2n
= lim [Z e""( S>> din )1 (106)
I P m=n-1 k=0

5. Convergence of the HAM solution

As pointed out by Liao [22], the convergence and rate of
approximation for the HAM solution strongly depends on
the values of auxiliary parameters 7, fi,, i3 and 74. To see
the admissible values of 7, %, i3 and 74, Zi-curves are plot-
ted for two different orders of approximations. Figs. 1-4
clearly depict that the range for the admissible values for
hy, ho, By and Ry is —0.04 <7y <0, —0.15< 7, <0,

0.5 a=02M=0.3

04

0.3

(0)

02

0.1

0
-0.05

-0.03
hy

-0.04 -0.02 -0.01 0
Fig. 1. hj-curve for the 8th-order of approximation.

=02 M=03 h;=-001

2.5

g il

-25

-5

-75

g'(0)

-125

-15

-0.15 -0.125 -0.1 -0075 -0.05
h2

-0.025 0

Fig. 2. hy-curve for the 8th-order of approximation.
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a=02M=05#=-001,P=K=1

10
8
6
g
T
= 4
2
0 \\
-0.8 -06 -04 -0.2 0
fiz
Fig. 3. hz-curve for the 8th-order of approximation.
a=02 M=10, hy=-001h3=-0.05h3=-03 P=1K=1
6 L
4 L
s 2
=
0
—2t
-0.01 -0.008 -0.006 -0.004 -0.002 0
hg

Fig. 4. h4-curve for the 8th-order of approximation.

—0.6<73<0 and -—-0.004 <74<0. Our calculations
clearly indicate that the series (60), (61), (104) and (106)
converge for whole region of x when #; = —0.01,
ni= —0.05 3= — 0.3 and 7y = — 0.002.

6. Results and discussion

Figs. 5-16 have been drawn to see the effects of the sec-
ond grade parameter o, Hartman number M, radiation

M=1.0

Fig. 5. Effects of « on 8th-order approximation for f” at #; = —0.01.

M= 1.0, hy=-0.01

150}

125}

100}

Fig. 6. Effects of « on 8th-order approximation for g’ at z, = —0.05.

a=05

] 2 4 6 8
U

Fig. 7. Effects of M on 8th-order approximation for f” at #; = —0.01.

a=0.5 n;=-001

300 — M=0.0
ol o~ |- M=0.05
——-- M=007
Sl -—-M=0.1
> 150
100
50
0

Fig. 8. Effects of M on 8th-order approximation for g’ at /i, = —0.05.

parameter K and the Prandtl number Pr on the velocity
and the temperature fields.

Figs. 5-8 are made in order to see the effects of o and M
on the velocity components f” and g’. From Figs. 5 and 6, it
is seen that f’ and g are increased as the second grade
parameter o increases but this change is larger in g’ when
compared with f’. However, the boundary layer thickness
decreases in both the cases /’ and g’. Figs. 7 and 8 show
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M=05 K=4,P,=0.5,h;=-0.01

a=0
-------- a=5
-——-a=10
-—-a=15
6 8

Fig. 9. Effects of o on 8th-order approximation for 7 at /3 = —0.3.

M=05 K=4, P, =0.5 #1=-001%12=-0.05h3=-0.3

3 /N a=00
/ \ - a=05
o 1 A g 0

Fig. 10. Effects of o on 8th-order approximation for 7} at /iy = —0.002.

=02 K=4 P, =05 #;=-001

Fig. 11. Effects of M on 8th-order approximation for T} at /i3 = —0.3.

the effects of M on f” and g’. The velocity /" in Fig. 7 in
increasing function of M and the boundary layer thickness
decreases in case of f. From Fig. §, it is seen that the veloc-
ity component g’ is decreased as the Hartman number M
increases. However, this decrement is very larger in g’ on
the small values of M. The boundary layer thickness
increases in this cases.

a=05 K=2 Pr=0.5 #; =-0.01,hp = -0.05h3=-0.3

0.4

Fig. 12. Effects of M on 8th-order approximation for 7 at iy = —0.002.

=02 M=0.5 P, =0.5 hy=-0.01

10
7

Fig. 13. Effects of K on 8th-order approximation for 7 at 73 = —0.3.

a=05M=05 P =05t =001k = -0.05%3 =03

0.5¢ i — K=00

Fig. 14. Effects of K on 8th-order approximation for 7 at /iy = —0.002.

Figs. 9-16 are plotted to see the effects of o, M, K and Pr
on the temperature profiles 7, and 7. Figs. 9 and 10 indi-
cate the effects of & on Ty and 7. In Fig. 9, the temperature
T, decreases as o« increases but this decrement is made on
very large values of second grade parameter o and in
Fig. 10, Ty is increasing when o increases. The boundary
layer thickness increases in case of 7T and decreases in case
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=02 M=1 K=5n4=-001

n

Fig. 15. Effects of Pr on 8th-order approximation for 7 at i3 = —0.3.

a=05M=05 K=2 #=-0011p=-0.053=-0.3

Fig. 16. Effects of Pr on 8th-order approximation for 7 at /4 = —0.002.

of Ty. Figs. 11 and 12 illustrate the effects of M on temper-
ature 7o and 7. It is found in Fig. 11 that T, initially
increases and after the value at M > 10 it goes to decrease
and the boundary layer thickness is increased. Fig. 12 gives
that T is decreasing function of M. The boundary layer
thickness is also increased in the case of 7. Figs. 13 and
14 elucidate the effects of K on Ty and T;. It is seen that
To and T; are increasing function of K. Moreover the
boundary layer thickness decreases in both the cases T
and 7. Figs. 15 and 16 show the effects of Pr on T, and
T:. The temperatures T, and 7 increase for large values
of Pr. However, this increment is larger in 7, when com-
pared with T at very small values of Pr. The boundary
layer thickness decreases in both cases of Ty and T7.

Table 1

Effects of the non-dimensional parameters M and o on f”(0) and g”(0)

« M0 g0 M 0 g0

1 0 0.93245764 0.87630411 0 1 1.1329356 2.0831693
0.1  0.933154 0.877628 0.1 1.11856 1.91021
0.5 0.949745 0.908814 0.5 1.06353 1.38704
1.0 1.0000000 1.0000000 1.0 1.0000000  1.0000000
1.5 1.07884 1.13584 1.5 0.941841  0.783586
3.0 1.4266105 1.5686494 1.7 0.919979  0.724826

4.0 1.7023142 —-21.505764 2.0 0.88860210 0.65521489

Table 2
Effects of the non-dimensional parameters M, o, K and Pr on T((0) and
T,(0)

o M K Pr T;(0) T(0)
1 0 3 1 0.36170565 1.44329
0.1 0.361766 1.44309
0.5 0.363197 1.4384
1.0 0.36751389 1.42398
1.5 0.374217 1.40059
3.0 0.40228349 1.27357
4.0 0.42214090 1.09502
1 2 0 1 0.057648010 1.0000000
0.1 0.155971 1.00382
0.5 0.31501 1.02045
1.0 0.38762665 1.03878
1.5 0.421388 1.05697
2.0 0.43071212 1.09287
3.0 0.38268495 1.36861
5.0 0.10071477 4.68049
1 1 3 0 0.057648010 1.0000000
0.1 0.152492 1.01245
0.3 0.268866 1.03823
0.5 0.342648 1.06497
0.7 0.396276 1.09249
1.0 0.36751389 1.13512
1.2 —0.205072 1.16406
0 1 3 1 0.38138688 1.12466
0.1 0.379944 1.15557
0.5 0.374298 1.27704
1.0 0.36751389 1.42398
1.5 0.361019 1.56544
1.7 0.358499 1.62049
2.0 0.35479890 1.70141

Tables 1 and 2 have been included just to show the var-
iation of a, M, K, and Pr. Table 1 indicates the effects of «
and M on f’(0) and g”(0). It is found that f”(0) increases
with an increase in M but decreases for large values of «
[45]. The behavior of o and M on the magnitude of g”(0)
is similar to that of f’(0). Table 2 shows the variation of
M, K, Pr and o on T(0) and 79(0). As expected T(0)
increases and 77(0) decreases when values of M are
increased. Further 79(0) is an increasing function of K
whereas T(0) increases for 0 < K < 2.0 and then decreases
when K > 2. The effects of Pr here indicates that 7 (0) first
increases and then decreases. However 7| (0) is an increas-
ing function of Pr. Moreover, the large values of o are
responsible for increasing 77 (0) and decreasing 77 (0).

7. Concluding remarks

MHD steady flow of an incompressible second grade
fluid in the presence of radiation has been examined in this
treatise. The system is stressed by a uniform transverse
magnetic field. The non-linear equations are solved analyt-
ically using HAM. The obtained results are quite new and
have never been reported. Even such results for MHD vis-
cous fluid have not be reported yet. However, the numeri-
cal solution for MHD viscous fluid is given in reference
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[21]. The results for MHD viscous fluid in the presence of a
radiation can be recovered by taking o = 0. The present
solution for f”(0) and T (0) are qualitatively similar to that
given in reference [45]. This provides useful comparison.
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